Introduction to Database
Systems

CSE 444

Lecture #13
Feb 21 2001

Announcements

¥ Midterm grading completed
&Problem 1,5: Yana
&Problems 2,3,4 - Surajit

¥ HW#3 due today

3"Best 3" homeworks will be used for grades
(At is in your benefit to turn in HW#4

FReading list list for Last Wed 2/14 (Vol 2)
ASection 3.1.3, 3.2, 3.3.1, 3.3.2, 3.4, 3.5, 4.1, 4.2

Announcements (2)

3 Project Report Due next Wed

AProject Web Page will be updated with guidelines
3 Project Demo and Interview

RMarch 6 (after class) and March 7

HYana will coordinate signing up
#Finals Overview — March 5

&About 15 mins

HImmediately after class

8 Finals week office hours will be announced next
week

B+ Trees

38Search trees

#lIdeain B Trees:
BImake 1 node = 1 block

¥Idea in B+ Trees:

RMake leaves into a linked list (range queries
are easier)

Indexing

Reading: Section 4.3, 4.4, 5.4
(Vol 2)

B+ Trees Basics

e Parameter d = the degree

#8Each node has >= d and <= 2d keys

(except root) [2 [12] =
/ i Y \

Keysk <30

Keys30<=k<120 Keys 120<=k<240 Keys 240<=k

B+ Tree Example

d=2

[20T60] T] [100]12J140]]

[~ 11 L2 T L]

10118 20| 3 | 40|50 60 80 | 8 | 90

RESPARRS

/\\\\

B+ Tree Design

$How large d ?
F$Example:
IKey size = 4 bytes
KPointer size = 8 bytes
IBlock size = 4096 byes
#2d x4 + (2d+1) x8 <= 4096
¥#d =170

Searching a B+ Tree

¥Exact key values:

Select name
[RIStart at the root From people

RProceed down, to the leaf | Whereage=25

F¥Range queries: Select name
As above From people
) Where 20 <=

RThen sequential traversal annge :: ;ge

B+ Trees in Practice

3 Typical order: 100. Typical fill-factor: 67%.
Raverage fanout = 133

38 Typical capacities:
RHeight 4: 1334 = 312,900,700 records
EAHeight 3: 1333 = 2,352,637 records

38 Can often hold top levels in buffer pool:
HlLevel 1 = 1 page = 8 Kbytes
RlLevel 2 = 133 pages = 1 Mbyte
ElLevel 3 = 17,689 pages = 133 MBytes

Insertion in a B+ Tree

Insert (K, P)

3 Find leaf where K belongs, insert

38 If no overflow (2d keys or less), halt

3 If overflow (2d+1 keys), split node, insert in parent:

(K3, |) to parent
[kiTke] k3 ke[xs | [k Tl T [« Jrs]]
[PTei] P2 [p3lpalps| — |polpi]p2] [|[p3]Pa]ps]

@8 If leaf, keep K3 too in right node
3 When root splits, new root has 1 key only

Insertion in a B+ Tree

Insert K=19
80

20 | 60 100 | 12 | 140

10 1|18 20| 3 |40 |50 60 80| 8|90

LL%LM bt

Insertion in a B+ Tree

After insertion
lso [[[]
EL -l T T[]
[20T60] T] [100] 12 [140]

I
LILIST T L2 T L]

e

80 | 8 | 90

18 19 20| 3 | 40|50

LLWLMLMQ

Insertion in a B+ Tree

Now insert 25

80

20 | 60 100 | 12 | 140

18 19 20| 3 | 40|50

LLWLLm{éé

80| 8|9

Insertion in a B+ Tree

After insertion
[so] [T]
avasmas N s i
\ \‘\“\‘

101 18 19

RS G R i
o

20| 2|30 4

Insertion in a B+ Tree

But now have to split !

80

20 | 60 100 | 12 | 140

111819 20| 2304 80| 8|90

RS e R i
e

Insertion in a B+ Tree

After the split
EX
E1 -
[20]30]60 []
[-]
1001|1819 20 30|45 60| 6

@
3
@
o
3

LLHENEW{/ ammﬁ;é

Deletion from a B+ Tree

Delete 30

50590

iilvinzg mz bt

Deletion from a B+ Tree

Deletion from a B+ Tree

After deleting 30 Now delete 25
May changeto
40, or not
|2030\6o\ | [100]12J140]]
1001|1819 20 80 8 |90 1001|1819 20

80890

iy x.mm iy Eh{éé

Deletion from a B+ Tree Deletion from a B+ Tree

After deleting 25 Now delete 40
Need to rebalance
Rotate [0 T T]

[20]30]60]] [100] 12 T140]]

L] []] I \

S

80890

101 |18]19

10118

i e S R
R éﬁh{éé i 4 il

Deletion from a B+ Tree Deletion from a B+ Tree
After deleting 40

Final tree

Rotation not possiblg
Need to merge noded 21 |]
FL-L [T[]

[19T30]60 [] [100] 12 [140]

I
ANENEE L2 T L]

/ e, R \ e
L\Mé \.@Méé

Hash Tables

38 Secondary storage hash tables are much like
main memory ones

38 Recall basics:
R There are n buckets
&IA hash function f(k) maps a key k to {0, 1, ..., n-1}
&IStore in bucket f(k) a pointer to record with key k

¥ Secondary storage: bucket = block, use overflow
blocks when needed

Hash Table Example

#$Assume 1 bucket (block) stores 2 keys +
pointers

%h(e)=0 E
3¢h(b)=h(f)=1 D
3h(g)=2 T

¥h(a)=h(c)=3

Searching in a Hash Table

¥Search for a:
#¥Compute h(a)=3

$8Read bucket 3 o
381 disk access 1P
f

2 9

3 a

Insertion in Hash Table

#Place in right bucket, if space
¥E.g. h(d)=2

e

N
ol |aa|mio

Insertion in Hash Table

3 Create overflow block, if no space
$E.g. h(k)=1
0

e

1

2

3EMore over- 5
flow blocks
may be needed

ol |laal|rio

Hash Table Performance

38 Excellent, if no overflow blocks

¥ Degrades considerably when number of
keys exceeds the number of buckets (I.e.
many overflow blocks).

Extensible Hash Table

38Allows has table to grow, to avoid
performance degradation

¥Assume a hash function h that returns
numbers in {0, ..., 2x- 1}

#8Start with n = 21 << 2k, only look at first
I most significant bits

Extensible Hash Table

#$E.g. i=1, n=2, k=4

[i=1 \/v 0(010) [1]
0

1 1(011) [1]

FNote: we only look at the first bit (0 or 1)

Insertion in Extensible
Hash Table

¥Insert 1110

[i=1 \/v 0(010) [1]
0

1 1(011) [1]
S 1(110)

Insertion in Extensible
Hash Table

¥Now insert 1010

[i=1 \/v 0(010) [2]
0

1 1(011) [1]
S 1(110), 1(010)

¥Need to extend table, split blocks
i becomes 2

Insertion in Extensible
Hash Table

#ENow insert 1110

[i=2] 0(010) H

01 10(11) 2]
10 10(10)
11 —

11(10) 2]

Insertion in Extensible
Hash Table

#Now insert 0000, then 0101

[i=2] 0(010) [1]
/ 0(000), 0(101)
00

01 10(11) 2]
10 10(10)
11 —

11(10) 2]

¥Need to split block

Insertion in Extensible
Hash Table

3After splitting the block

00(10) 2]
i=2 00(00)
/ 01(01) 2]
00 /
01 10(11) [2]
10 10(10)
11 —
11(10) [2]

Performance Extensible
Hash Table

38No overflow blocks: access always one
read

F¥BUT:
RExtensions can be costly and siruptive

[RAfter an extension table may no longer fit in
memory

Linear Hash Table

3Idea: extend only one entry at a time
Problem: n= no longer a power of 2
$Let i be such that 2! <=n < 2i*+1
FeAfter computing h(k), use last i bits:

HIf last i bits represent a number > n, change
msb from 1 to 0 (get a nhumber <= n)

Linear Hash Table

Example
¥¢N=3
(01)00 []
i=2 (11)00
/(01)11 BITFLIP |_|
00
01 (10)10]
10

40

Linear Hash Table
Example

¥Insert 1000: overflow blocks...

i=2 (11)00
/ (o111 []
00

01 (10)10 |]
10

41

(01)00 [3 [(10)00 []

Linear Hash Tables

3 Extension: independent on overflow
blocks

$Extend n:=n+1 when average number of
records per block exceeds (say) 80%

42

01
10

#From n=3 to n=4

(01)00 []
i=2 (11)00
/ (11]
(10)10 |]
#0nly needtotouch 00

one block (which one ?) %

11

Linear Hash Table
Extension

(01)00

(11)00

(o1)11

(10)10

(o1)11

LT T T

43

Linear Hash Table

Extension

¥From n=3 to n=4 finished

¥Extension from n=4
to n=5 (new bit)

3Need to touch every
single block (why ?)

¥Book is wrong here...

00
01

11

i=2

(01)00

(11)00

(10)10

(o111

LT T T

44

